Биоинженер Ибрагим Озболат из университета Айовы разработал новую технологию биопечати. Живую ткань и даже целые органы будут «вязать», как бабушки вяжут носки и шарфики, с помощью 3D-принтеров, оборудованных роборуками. Сейчас самой популярной методикой био-печати является наращивание ткани однородных клеток на каркас. Когда ткань готова, каркас растворяют и удаляют. Однако каркас делает невозможным напечатать трехмерных структур, что необходимо для создания аналогов мышечной или хрящевой ткани — которые представляют из себя волокнистые ткани из одного типа клеток с вкраплениями клеток других типов.
Учёные из Университетов Иллинойса и Вашингтона с помощью 3D-принтера создали новую революционную электронную мембрану, способную заменить кардиостимуляторы. Напечатанная сеть электродов мембраны, прилегая к поверхности сердца, поддерживают его ритм в течение неограниченного количества времени.
Устройство использует тонкую сеть сенсоров для непрерывного отслеживания электрической активности сердца, и в будущем сможет подавать электрические разряды, которые помогут поддерживать здоровый сердечный ритм. Мембраны создаются с применением технологий компьютерного моделирования и 3D-печати, а потому идеально соответствуют параметрам сердца своего носителя. Вдобавок, они могут испускать электрические стимулы из различных частей устройства для предотвращения различных сердечных сбоев при аритмии или приступах.
Известный американский генетик Крейг Вентер, человек, впервые в мире расшифровавший геном человека, а затем синтезировавший бактерию с искусственной ДНК, снова шокирует научные круги, разработав и предложив ряд фантастических на первый взгляд идей. В институте имени Крейга, созданном им самим, команда ученых работает над проектом, призванном оцифровывать биологический материал, а затем вновь из цифрового формата переводить в биологический. Другими словами, берется, например, вакцина, оцифровывается, после чего ее можно переслать по электронной почте в любую часть планеты, а затем распечатать на специальном
Гипотетически таким образом можно решить много проблем: своевременно останавливать эпидемии, практически мгновенно передавать лекарства, то есть спасти много жизней. Однако внедрению такого открытия в жизнь препятствует довольно существенное «но»: оцифровывать можно не только вакцины, но и смертоносные вирусы, что может представлять немалую угрозу для общества. Однако трудно оспорить тот факт, что подобная биотелепортация в корне может изменить медицину, разумеется, если принять все меры предосторожности.
Эксперименты американской компании Organovo увенчались успехом, там научились создавать небольшие искусственные фрагменты печени, используя для этого 3D принтер. О результатах работы над технологией на конференции в Бостоне рассказал исполнительный директор компании, Кейт Мёрфи (Keith Murphy). Кратко о содержании доклада пишет New Scientist, также его можно прочитать на сайте компании.
Ткань создаётся на 3D принтере аналогично обычной струйной печати, однако вместо различных красок используются разные типы клеток. Для создания искусственной печени специалисты использовали три типа клеток печени: гепатоциты, звездчатые клетки (клетки Ито) и, в небольшом количестве, клетки эпителия, выстилающего кровеносные сосуды.
Левую сторону своего лица 60-летний британец по имени Эрик Могер потерял в результате диагностированной медиками агрессивной раковой опухоли. Такая спасительная для мужчины операция оставила в его лице зияющую дыру. Он не мог разборчиво говорить, к тому же, был вынужден употреблять пищу через трубочку. Однако благодаря передовым технологиям 3D-печати ему одному из первых в мире удалось получить не только новое лицо, но и обрести новую жизнь.
Взяв за основу результаты сканирований, специалисты смогли создать трёхмерное изображение будущего лица Эрика, зеркально отобразив неповреждённую сторону. После чего полученную модель распечатали на новейшем 3D-принтере.
Группа учёных химического факультета Оксфордского университета научились воспроизводить при помощи 3d-принтера ткани, по некоторым своим свойствам неотличимые от живых. Субстанция из жира и воды в будущем может стать основой для получения искусственных тканей из живых клеток. С их помощью можно будет лечить травмы, выращивать человеческие органы и биопротезы, что решит проблему нехватки доноров и спасёт множество жизней.
Воспроизвести живую клетку с генетической информацией и способностью к самостоятельному размножению учёные пока не могут. Поэтому материалом для их экспериментов послужила водно-масляная мицелла — капелька воды, окружённая двойным слоем липидов (жиров). Диаметр такой капли — 50 микрон, что всего лишь в пять раз больше размеров настоящей клетки. Водная начинка имитирует цитоплазму, а липидная оболочка — клеточную мембрану. В результате получается весьма приближенная к реальности модель клетки из которых можно «собрать» аналог мышечной ткани.
Американский стартап Modern Meadow попытается найти способ производства дешёвой и доступной еды. Для этого предполагается задействовать специальный
Как отмечается на сайте Modern Meadow, ее специалисты одними из первых занимались разработками в области создания тканей организма. Технология основана на «трёхмерной компьютерной сборки тканей» или биопечати. Технология изготовления проста: учёные берут клетки животных (мышечные, жировые и несколько других видов) и помещают их в питательную среду. Она состоит из аминокислот, витаминов, минералов, солей и сахаров. Для запуска процесса необходима только электроэнергия.